
Where are we now?
A large benchmark study of recent symbolic regression methods

Patryk Orzechowski
University of Pennsylvania
Philadelphia, PA 19104, USA

patryk.orzechowski@gmail.com

William La Cava∗
University of Pennsylvania
Philadelphia, PA 19104, USA

lacava@upenn.edu

Jason H. Moore
University of Pennsylvania
Philadelphia, PA 19104
jhmoore@upenn.edu

ABSTRACT
In this paper we provide a broad benchmarking of recent genetic
programming approaches to symbolic regression in the context
of state of the art machine learning approaches. We use a set of
nearly 100 regression benchmark problems culled from open source
repositories across the web.We conduct a rigorous benchmarking of
four recent symbolic regression approaches as well as nine machine
learning approaches from scikit-learn. The results suggest that
symbolic regression performs strongly compared to state-of-the-art
gradient boosting algorithms, although in terms of running times is
among the slowest of the available methodologies. We discuss the
results in detail and point to future research directions that may
allow symbolic regression to gain wider adoption in the machine
learning community.

CCS CONCEPTS
•Computingmethodologies→Classification and regression
trees;Genetic programming; Ensemblemethods; Cross-validation;

KEYWORDS
symbolic regression, benchmarking, machine learning, genetic pro-
gramming

ACM Reference Format:
Patryk Orzechowski, William La Cava, and Jason H. Moore. 2018. Where are
we now? A large benchmark study of recent symbolic regression methods.
In GECCO ’18: Genetic and Evolutionary Computation Conference, July 15–19,
2018, Kyoto, Japan. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3205455.3205539

1 INTRODUCTION
Since the beginning of the field, the genetic programming (GP)
community has considered the task of symbolic regression (SR) as
a basis for methodology research and as a primary application area.
GP-based SR (GPSR) has produced a number of notable results in
real-world regression applications, for example dynamical system

∗corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’18, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5618-3/18/07. . . $15.00
https://doi.org/10.1145/3205455.3205539

modeling in physics [28], biology [30], industrial wind turbines [19],
fluid dynamics [18], robotics [2], climate change forecasting [33],
and financial trading [17], among others. However, the most preva-
lent use of GPSR is in the experimental analysis of new methods,
for which SR provides a convenient platform for benchmarking.
Despite this persistent use, several shortcomings of SR benchmark-
ing are notable. First, the GP community lacks a unified standard
for SR benchmark datasets, as noted previously [21]. Several SR
benchmarks have been proposed [17, 23, 36], critiqued [6, 21], and
black-listed [21], leading to inconsistencies in the experimental
design of papers. In addition to a lack of consensus for bench-
mark datasets, there is not a standard set of benchmark algorithms
against which new methods are compared. As a result, it is typical
for researchers to design or choose their own set of algorithms to
compare to proposed methods, and it is up to reviewers and read-
ers to assess the validity of the comparison. Experiments typically
consider single values for GP hyperparameters such as population
size or crossover rate, which increases the uncertainty of results
even further. These practices make it nearly impossible to judge a
new method outside the narrow scope of the experimental results.

Of course, there are shortcomings to focusing on benchmarks as
well, as noted by others [9, 38]. Putting too much focus on bench-
marking may stifle innovation or lead to a lack of generalization to
new tasks. However, the evidence suggests that the GP community
is far from being overly focused on benchmarking. A 2012 survey
of GP papers in EuroGP and GECCO from 2009 - 2011 reported
the average number of SR problems per paper to be 2.4 [21]; 26.2%
of papers relied on the quartic polynomial problem, which has
since been black-listed for being too trivial [38]. We contend that
the lack of focus in the GP community on rigorous benchmarking
makes it hard to know how GPSR methods fit into the broader ma-
chine learning (ML) community. This lack of clarity also impedes
the adoption of advancements to traditional GP techniques, and
leaves researchers unsure about which advancements will have
meaningful impacts.

There have been a few efforts to conduct broad benchmark-
ing of GP methods in the past. For example, a recent a study
looked at five SR methods on a set of five synthetic and four real
world datasets [37]. Outside of GP, the efforts to benchmark ML
approaches across many problems are more frequent, although
most focus on the task of classification. Previous studies have
looked at hundreds classification methodologies [11] and up to
165 datasets [24]. Collaborative online tools such as Kaggle and
OpenML [35] have also driven ML benchmarking and adoption of
new methods. These larger benchmark studies have, for the most
part, ignored GP-based methods. As a result, the GPSR field lacks a

1183

https://doi.org/10.1145/3205455.3205539
https://doi.org/10.1145/3205455.3205539
https://doi.org/10.1145/3205455.3205539
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3205455.3205539&domain=pdf&date_stamp=2018-07-02

GECCO ’18, July 15–19, 2018, Kyoto, Japan P. Orzechowski et al.

general sense of where it stands in relation to the broader ML field
in terms of expected performance.

Our goal in this study is to present initial results in our efforts to
assess the performance of recent GPSRmethods in the broad context
of ML regression. We benchmark the performance of four recent
SR algorithms and ten established ML approaches on a collection
of 94 different real-world regression problems. For each problem
we consider hyperparameter tuning via cross-validation and assess
each method in terms of training error, test error, and wall-clock
time. Finally, we provide the code for the analysis in order to allow
researchers to benchmark their own methods in this framework
and reproduce the results shown here.

2 METHODS
We compare four recent GPSR methods in this benchmark and
ten well-established ML regression methods. In this section we
briefly present the selected methods and describe the design of the
experiment.

2.1 GP methods
A number of factors impacted our choice of these methods. Two
key elements were open-source implementations and ease of use.
In addition, we wished to test different research thrusts in GP
literature. The four methods encompass different innovations to
standard GPSR, including incorporation of constant optimization,
semantic search divers, and Pareto optimization. Each method is
described briefly below.

Multiple regression genetic programming (MRGP). [1] MRGP
combines Lasso regression with the tree search afforded by GP. A
weight is attached to each node in each program. These weights are
adapted by applying Lasso regression to the entire program trace.
MRGP uses point mutation and sub-tree crossover for variation and
NSGA-II for selection. We use the version implemented in FlexGP 1.

ϵ-Lexicase selection (EPLEX). [20] ϵ-lexicase selection adapts lex-
icase selection method [32] for regression. Rather than aggregating
performance on the training set into a single fitness score, EPLEX
selects parents by filtering the population through randomized or-
derings of training samples and removing individuals that are not
within ϵ of the best performance in the pool. We use the EPLEX
method implemented in ellyn2. Ellyn is a stack-based GP system
written in C++ with a Python interface for use with scikit-learn. It
uses point mutation and subtree crossover. Weights in the programs
are trained each generation via stochastic hill climbing. A Pareto
archive of trade-offs between mean squared error and complexity
is kept during each run, and a small internal validation fold is used
to select the final model returned by the search process.

Age-fitness Pareto Optimization (AFP). [29] AFP is a selection
scheme based on the concept of age-layered populations introduced
by Hornby et. al. [15]. AFP introduces a new individual each genera-
tion with an age of 0. An individual’s age is updated each generation
to reflect the number of generations since its oldest node (gene)
entered the population. Parent selection is random and Pareto tour-
naments are used for survival on the basis of age and fitness. We

1https://flexgp.github.io/gp-learners/
2https://epistasislab.github.io/ellyn/

use the version of AFP implemented in ellyn, with the same settings
described above.

Geometric Semantic Genetic Programming (GSGP). [22] GSGP is
a recent method that has shown many promising results for SR and
other tasks. The main concept behind GSGP is the use of semantic
variation operators that produce offspring whose semantics lie
on the vector between the semantics of the parent and the target
semantics (i.e. target labels). Use of these variation operators has
the advantage of creating a unimodal fitness landscape. On the
downside, the variation operators result in exponential growth
of programs. We use the version GSGP implemented in C++ by
Castelli et. al. [4], which is optimized to minimize memory usage.
It is available from SourceForge3.

2.2 ML methods
We use scikit-learn [26] implementations of the following methods
in this study:

Linear Regression. Linear Regression is a simple model of regres-
sion that minimizes the sum of the square errors of a linear model
of inputs. The model is defined by ŷ = b +wT x , where y is a de-
pendent variable (target), x are explanatory variables, b andw are
intercept and slope variables, and the minimized function is equal
to (1).

CLR (w) = 1
2

∑
i
(yi −wT xi)2 (1)

Kernel Ridge. Kernel Ridge [27] performs Ridge regression using
a linear function in the space of the respective kernel. Least squares
with l2-norm regularization is applied in order to prevent overfitting.
The minimized function is equal to (2), where ϕ is a kernel function
and λ is the regularization parameter.

CKR (w) = 1
2

∑
i
(yi −wTϕ(xi))2 +

1
2
λ | |w | |2 (2)

Least-angle regression with Lasso. Lasso (Least absolute shrinkage
and selection operator) is a popular method of regression that
applies both feature selection and regularization [34]. Similarly
to Kernel Ridge, high values of w are penalized. The use of the
l1-norm onw in the minimization function (see (3)) improves the
ability to push individual weights to zero, effectively performing
feature selection.

CL(w) = 1
2

∑
i
(yi −wTϕ(xi))2 + λ | |w | |1 (3)

Least-angle regression with Lasso, a.k.a. Lars [10], is an efficient
algorithm for producing a family of Lasso solutions. It is able to
compute the exact values of λ for new variables entering the model.

Linear SVR. Linear Support Vector Regression extends the con-
cept of Support Vector Classifiers (SVC) to the task of regression,
i.e. to predict real values instead of classes. Its objective is to mini-
mize an ϵ-insensitive loss function with a regularization p/enalty
(12 | |w | |2) in order to improve generalization [31].

3http://gsgp.sourceforge.net/

1184

Where are we now?
A large benchmark study of recent symbolic regression methods GECCO ’18, July 15–19, 2018, Kyoto, Japan

SGD Regression. SGD Regression implements stochastic gradi-
ent descent and is especially well suited for larger problems with
over 10,000 of instances [26]. We add this method of regression
regardless, to compare its performance on smaller datasets.

MLP Regressor. Neural networks have been applied to regression
problems for almost three decades [14]. We include multilayer
perceptrons (MLPs) as one of the benchmarked algorithms. We
decided to benchmark neural network with a single hidden layer
with fixed number of neurons (100) and compare different activation
functions, learning functions and solvers, including the novel adam
solver [16].

AdaBoost regression. Adaptive Boosting, called also AdaBoost
[8, 12], is a flexible technique of combining a set of weak learn-
ers into a single stronger regressor. By changing the distribution
(i.e. weights) of instances in the data, previously misclassified in-
stances are favored in consecutive iterations. The final prediction
is obtained by a weighted sum or weighted majority voting. As the
result, the final regressor has smaller prediction errors. The method
is considered sensitive to outliers.

Random Forest regression. Random Forests [3] are a very popular
ensemble method based on combining multiple decision trees into
a single stronger predictor. Each tree is trained independently with
a randomly selected subset of the instances, in a process known
as bootstrap-aggregating or bagging. The resulting prediction is
an average of multiple predictions. Random forests try to reduce
variance by not allowing decision trees to grow large, making them
harder to overfit.

Gradient Boosting regression. Gradient Boosting [13] is an ensem-
ble method that is based on regression trees. It shares the AdaBoost
concept of iteratively improving the system performance on its
weakest points. In contrast to AdaBoost, the distribution of the sam-
ples remain the same. Instead, consecutively created trees correct
the errors of the previous ones. Gradient Boosting minimizes bias
(not variance like in Random Forests). In comparison to Random
Forests, Gradient Boosting is sequential (thus slower), more difficult
to train, but is reported to perform better than Random Forest [24].

Extreme Gradient Boosting. Extreme Gradient Boosting, also
known as XGBoost [5], incorporates regularization into the Gradi-
ent Boosting algorithm in order to control overfitting. Its objective
function combines the optimization of training loss with model
complexity. This brings the predictor closer to the underlying dis-
tribution of the data, while encouraging simple models, which have
smaller variance. Extreme gradient boosting is considered a state-
of-the-art method in ML.

2.3 Datasets
We pulled the benchmark datasets from the Penn Machine Learn-
ing Benchmark (PMLB) [25] repository4, which contains a large
collection of standardized datasets for classification and regression
problems. This repository overlaps heavily with datasets from UCI,
OpenML, and Kaggle. In this paper we considered regression prob-
lems only, of which there are 120 total. For our experiment, we

4https://github.com/EpistasisLab/penn-ml-benchmarks

removed datasets with 3000 instances or more (22 datasets) and
two others for which at least one of the methods failed to provide
the required number of results in feasible time (i.e. 72 hours on In-
tel®Xeon®CPU E5-2680 v3@ 2.50GHz). This gave the collection of
94 datasets in total. The distribution of the number of instances and
the number of features in the collection of the datasets is presented
in Fig. 1.

0 200 400 600 800 1000

Number of instances

0

20

40

60

80

100

N
u

m
b

e
r

o
f

fe
a

tu
re

s

Figure 1: Basic characteristics of the datasets used in the
study

2.4 Experiment design
In order to benchmark different regression methods, an effort was
made to measure performance of each of the methods in as similar
an environment as possible. First, we decided to treat each of the GP
methods as a classical ML approach and used the scikit-learn library
[26] for cross validation and hyperparameter optimization. This re-
quired some source code modifications to allow GSGP and MRGP to
communicate with the wrapper. Second, instead of reimplementing
the algorithms, we relied on the original implementations with as
few modifications as possible. Wrapping each method allowed us to
keep a common benchmarking framework based on the scikit-learn
functions.

The datasets were divided in the following way: 75% of samples
in each of the datasets were used for training, whereas the remain-
ing 25% were used for testing. We used grid search to tune the
hyperparameters of each method. Each method was run with a pre-
set grid of input parameters, detailed in Table 1. The optimal setting
of the parameters was determined based on 5-fold cross-validation
performed on training data only. The setting with the best R2 score
across all folds was used for training the algorithms on the whole
training data. The performance of the methods was measured on

1185

GECCO ’18, July 15–19, 2018, Kyoto, Japan P. Orzechowski et al.

Table 1: Analyzed algorithms with their parameters settings. The parameters in quotations refer to their names in the scikit-
learn implementations.

Algorithm name Parameter Values

eplex, pop size / generations {100/1000,1000/100}
afp, max program length / max depth {64 / 6}
mrgp crossover rate {0.2,0.5,0.8}

mutation rate 1-crossover rate

gsgp pop size / generations {100/1000,200/500,1000/100}
initial depth {6}
crossover rate {0.0,0.1,0.2}
mutation rate 1-crossover rate

eplex_1M pop size / generations {500/2000,1000/1000,2000/500}
max program length {100}

crossover rate {0.2,0.5,0.8}
mutation rate 1-crossover rate

AdaBoostRegressor ‘n_estimators’ {10, 100, 1000}
‘learning_rate’ {0.01, 0.1, 1, 10}

GradientBoostingRegressor ‘n_estimators’ {10, 100, 1000}
‘min_weight_fraction_leaf’ {0.0, 0.25, 0.5}

‘max_features’ {‘sqrt’,‘log2’, None}

KernelRidge ‘kernel’ {‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’}
‘alpha’ {1e-4, 1e-2, 0.1, 1}
‘gamma’ {0.01, 0.1, 1, 10 }

LassoLARS ‘alpha’ { 1e-04, 0.001, 0.01, 0.1, 1 }

LinearRegression default default

MLPRegressor ‘activation’ {‘logistic’, ‘tanh’, ‘relu’}
‘solver’ {‘lbfgs’,’adam’,‘sgd’}

‘learning_rate’ {‘constant’, ‘invscaling’, ‘adaptive’}

RandomForestRegressor ‘n_estimators’ {10, 100, 1000}
‘min_weight_fraction_leaf’ {0.0, 0.25, 0.5}

‘max_features’ {‘’sqrt’,‘log2’, None}

SGDRegressor ‘alpha’ {1e-06, 1e-04, 0.01, 1 }
‘penalty’ {‘l2’, ‘l1’, ‘elasticnet’}

LinearSVR ‘C’ {1e-06, 1e-04, 0.1, 1 }
‘loss’ {‘epsilon_insensitive’, ‘squared_epsilon_insensitive’}

XGBoost ‘n_estimators’ {10, 50, 100, 250, 500, 1000}
‘learning_rate’ {1e-4, 0.01, 0.05, 0.1, 0.2}

‘gamma’ {0, 0.1, 0.2, 0.3, 0.4}
‘max_depth’ {6}
‘subsample’ {0.5, 0.75, 1}

both training and testing datasets on the best model obtained dur-
ing cross-validation. We repeated the entire experiment 10 times
for each method and dataset.

Because of time constraints, we decided to run each of the GP-
based methods for 100,000 evaluations (population size x number
of generations). Additionally, we generated results for 1 million
evaluations using EPLEX (referred to as EPLEX_1M) in order to
assess how much a more thorough training of a GP-based regressor
would improve its performance.

Data preprocessing. We decided to feed benchmarked algorithms
with scaled data using StandardScaler function from scikit-learn.
The reason for this is our effort to keep the format of the input
data consistent across multiple algorithms for the purpose of bench-
marking. The choice of the optimal preprocessing method for the
particular regressor is out of scope of this paper.

Initialization of the algorithms. We initially considered starting
each of the methods with the same random seed, but eventually de-
cided to make all data splits randomly. In our belief both approaches
have disadvantages: the results will either be biased by the choice of
the random seed, or by using different splits for different methods.
By taking a median of the scores we became independent of the
initial split of the data.

Wrappers for the GP methods. Some modifications needed to be
done to each of the GP methods. For EPLEX and AFP, ellyn provides
an existing Python wrapper that was used. For other methods we
implemented a class derived from scikit-learn BaseEstimator, which
implemented two methods: fit(), used for training the regressor, and
predict(), used for testing performance of the regressor. The source
code of MRGP and GSGP had to be modified, so that the algorithms
could communicate with the wrapper.

Parameters for the algorithms. The settings of the input param-
eters for the algorithms were determined based on the available

1186

Where are we now?
A large benchmark study of recent symbolic regression methods GECCO ’18, July 15–19, 2018, Kyoto, Japan

recommendations for the given method, as well as previous experi-
ence of the authors. For GP-based methods we applied from 6 to
9 different settings (mainly: population size x number of genera-
tions and crossover and mutation rates). For the ML algorithms the
number of settings was method dependent. The largest grid of the
parameters was used for XGBoost method. The exact parameters
for the methods used in this study can be found in Table 1.

3 RESULTS
We present aggregated results of the benchmarked algorithms on
the collection of 94 regression datasets in Figures 2-3. The relative
performance of the algorithms was determined as the ability to
make the best predictions on the training and testing data using
mean squared error (MSE) of the samples. The performance on the
testing dataset is of primary importance, as it shows how well the
methods can generalize to previously unseen data [7]. However we
include the training comparisons as a way to assess the prediliction
for overfitting among methods.

We first analyze the results for each of the regression tasks on
the training data. The relative rankings of each method in terms
of MSE is presented in Fig. 2. The best training performance was
obtained with gradient boosting, which completed in top-2 for
the vast majority of the benchmarked datasets. The second best
method across all the datasets was XGBoost. The top-performing
GP method across all the datasets was MRGP and held the third
place on average across training sets.

The test data results allow us to assess how well the algorithms
handle generalization as well as their level of overfitting on training
data. The relative performance of the methods changed noticeably
when previously unseen data was used for evaluation. The results
are presented in Fig. 3. The best performing method on average
was EPLEX-1M. This GPSR method slightly outperformed XGBoost,
which ended as the second best generalizing method across datasets.
Gradient boosting was the third best method, and MLP finished in
fourth place.

Several of the methods exhibit overfitting by changing ranking
between the training and testing evaluations. Gradient boosting,
for example, moves from first to third place. The performance of
MRGP, which was one of the best regressors on the training data,
also exhibits overfitting, resulting in a drop of its average ranking
from 4th to 6th. MRGP’s results also contained the highest vari-
ance in performance on test sets. GSGP exhibits the highest level
of overfitting in terms rank changes, dropping from 8th to 13th.
Conversely, several methods appear to generalize well, including
EPLEX-1M (moving from a median ranking of 5 to 3) and Lasso (13
to 11).

We used the test set MSE scores to check for significant differ-
ences between methods across all datasets according to a Friedman
test, which produces a p-value less than 2e-16, indicating significant
differences. Post-hoc pairwise tests are then conducted and reported
in Table 2. The large number of datasets provides higher statistical
power than smaller experimental studies, leading to many p-values
below 0.05. EPLEX-1M statistically outperforms the highest number
of other methods (11), followed by XGBoost (9) and gradient boost-
ing (7). We find that none of the comparisons between EPLEX-1M,
XGBoost, gradient boosting and MLP are significantly different.

We now analyze the GP methods given equivalent numbers
of fitness evaluations (AFP, MRGP, EPLEX, and GSGP). The re-
sults between MRGP and EPLEX show no significant difference.
The only noted difference is that EPLEX significantly outperforms
AFP, whereas MRGP does not. The three methods AFP, MRGP,
and EPLEX all significantly outperform GSGP. Given more fitness
evaluations, EPLEX-1M significantly outperforms all the other GP
experiments, including EPLEX.

The comparison of running times per training task is presented
in Fig. 4. Three important considerations should be made when
assessing these results. First, the experiment was conducted in a
cluster environment. Second, each algorithm was run on a single
thread for each dataset. Thus the easily parallelized algorithms
(i.e., all GP-based methods and some ensemble tree methods) would
likely show better relative performance in amulticore setting. Third,
benchmarked algorithms were implemented using different pro-
gramming languages. Thus, comparison of running times doesn’t
exclusively reflect the complexity of the methods.

Despite these considerations, it is worth noting how much addi-
tional computation time is required by the GP methods, which are
one to three orders of magnitude slower than the nearest compari-
son. In terms of GP methods, MRGP runs the slowest, which may be
partially due to its Java implementation (the other four GP methods
use c++). EPLEX-1M is able to complete 10 times as many fitness
evaluations in approximately the same time. The other three GP
methods (GSGP, AFP, and EPLEX) show similar computation times.
Among other ML methods, the ensemble tree methods and MLP
are the slowest, and the linear methods are fastest, as expected.

The most frequent settings of the parameters picked for the best
model across all trials are presented in Table 3. We purposefully
do not include Linear Regression in the table (run with the default
values) or Kernel Ridge regression, for which multiple settings of
input parameters performed comparably. It may be noted each
GP-based method besides GSGP tended to favor large population
sizes over larger numbers of generations. The optimal setting for
crossover and mutation rates varied beteween methods.

4 CONCLUSIONS
In this paper we evaluated four recent GPSRmethods in comparison
to ten state-of-the-art ML methods on a set of 94 real-world regres-
sion problems. We consider hyper-parameter optimization for each
method using nested cross-validation, and compare the methods
in terms of the MSE they produce on training and testing sets,
and their runtime. The analysis includes some interesting results.
The most noteworthy finding is that a GPSR method (ϵ-lexicase
selection implemented in ellyn), given 1 million fitness evaluations,
achieves the best test set MSE ranking across all datasets and meth-
ods. Two of the GP-based methods, namely: EPLEX and MRGP,
produce competitive results compared to state-of-the-art ML re-
gression approaches. The downside of the GP-based methods is
their computation complexity when run on a single thread, which
contributes to much higher runtimes. Parallelism is likely to be a
key factor in allowing GP-based approaches to become competitive
with leading ML methods with respect to running times.

We also should note some shortcomings of this study that moti-
vate further analysis. First, a guiding motivation for the use of GPSR

1187

GECCO ’18, July 15–19, 2018, Kyoto, Japan P. Orzechowski et al.

g
s
g

p

a
fp

m
rg

p

e
p

le
x

e
p

le
x
-1

m

x
g

b
o

o
s
t

g
ra

d
b

o
o

s
t

m
lp rf

k
e

rn
e

l-
ri
d

g
e

a
d

a
b

o
o

s
t

la
s
s
o

-l
a

rs

lin
e

a
r-

s
v
r

lin
e

a
r-

re
g

re
s
s
io

n

s
g

d
-r

e
g

re
s
s
io

n

Algorithm

2

4

6

8

10

12

14

M
e
d
ia

n
 r

a
n
k
in

g
 f
o
r

tr
a
in

in
g
 s

e
t

Figure 2: Ranking of the performance of the algorithms based on the MSE score on training datasets.

g
s
g

p

a
fp

m
rg

p

e
p

le
x

e
p

le
x
-1

m

x
g

b
o

o
s
t

g
ra

d
b

o
o

s
t

m
lp rf

k
e

rn
e

l-
ri
d

g
e

a
d

a
b

o
o

s
t

la
s
s
o

-l
a

rs

lin
e

a
r-

s
v
r

lin
e

a
r-

re
g

re
s
s
io

n

s
g

d
-r

e
g

re
s
s
io

n

Algorithm

2

4

6

8

10

12

14

M
e
d
ia

n
 r

a
n
k
in

g
 f
o
r

te
s
ti
n
g
 s

e
t

Figure 3: Ranking of the performance of the algorithms based on the MSE score on testing datasets.

Table 2: Friedman Asymptotic General Symmetry Test. Bold indicates p <0.05.

eplex-1m xgboost gradboost mlp rf eplex mrgp kernel- adaboost afp lasso- linear- linear- sgd-
ridge lars svr regression regression

xgboost 1 - - - - - - - - - - - - -
gradboost 0.9 1 - - - - - - - - - - - -
mlp 0.2 0.6 1 - - - - - - - - - - -
rf 0.003 0.05 0.6 1 - - - - - - - - - -
eplex 0.001 0.02 0.4 1 1 - - - - - - - - -
mrgp 3e-07 2e-05 0.005 0.2 0.9 1 - - - - - - - -
kernel-ridge 0.0007 0.02 0.4 1 1 1 1 - - - - - - -
adaboost 1e-07 4e-06 0.002 0.1 0.8 0.9 1 0.9 - - - - - -
afp 3e-16 7e-14 4e-10 9e-06 0.0008 0.002 0.3 0.004 0.5 - - - - -
lasso-lars 0 0 2e-15 1e-11 1e-07 5e-07 0.002 6e-07 0.006 1 - - - -
linear-svr 0 0 0 3e-13 2e-09 3e-08 0.0002 7e-08 0.0008 0.8 1 - - -
linear-regression 0 0 0 1e-14 7e-11 6e-10 5e-05 1e-09 0.0001 0.5 1 1 - -
sgd-regression 0 0 0 0 1e-13 4e-12 1e-07 1e-12 5e-07 0.07 0.9 1 1 -
gsgp 0 0 0 0 0 0 2e-12 0 2e-11 0.0004 0.1 0.4 0.7 1

1188

Where are we now?
A large benchmark study of recent symbolic regression methods GECCO ’18, July 15–19, 2018, Kyoto, Japan

g
s
g
p

a
fp

m
rg
p

e
p
le
x

e
p
le
x
-1
m

x
g
b
o
o
s
t

g
ra
d
b
o
o
s
t

m
lp rf

k
e
rn
e
l-
ri
d
g
e

a
d
a
b
o
o
s
t

la
s
s
o
-l
a
rs

lin
e
a
r-
s
v
r

lin
e
a
r-
re
g
re
s
s
io
n

s
g
d
-r
e
g
re
s
s
io
n

Algorithm

10
−2

10
−1

10
0

10
1

10
2

10
3

R
u
n
ti
m

e
 o

f
th

e
 a

lg
o
ri
th

m
s
 (

in
 s

e
c
s
)

Figure 4: Median running time of each of the algorithms (in seconds).

Table 3: Most frequently chosen parameter settings based on 5-fold cross validation across all datasets.

Algorithm name Frequently best parameter settings

gsgp (‘g’=500, ‘max_len’=6, ‘popsize’=200, ‘rt_cross’=0.2, ‘rt_mut’=0.8)

afp (‘g’=100, ‘max_len’=64, ‘popsize’=1000, ‘rt_cross’=0.8, ‘rt_mut’ 0.2)

mrgp ({‘g’=100, ‘pop_size’=1000} or the opposite; ’rt_cross’=0.2, ‘rt_mut’=0.8)

eplex (‘g’=100, ‘max_len’=64, ‘popsize’=1000, ‘rt_cross’=0.8, ‘rt_mut’=0.2)

eplex-1m (‘g’=500, ‘max_len’=100, ‘popsize’=2000, ‘rt_cross’=0.8, ‘rt_mut’=0.2)

xgboost (‘’gamma’=0, ‘learning_rate’=0.01, ‘max_depth’=6, ‘n_estimators’=1000, ’subsample’=0.5)

gradboost (‘max_features’=None, ‘min_weight_fraction_leaf’=0.0, ‘n_estimators’=1000)

mlp (‘activation’=’logistic’, ‘learning_rate’= ‘constant’,‘solver’=‘lbfgs’)

rf (‘max_features’=None, ‘min_weight_fraction_leaf’=0.0, ‘n_estimators’=1000)

adaboost (‘learning_rate’=1.0, ‘n_estimators’=1000)

lasso-lars (‘alpha’=‘0.001’)

linear-svr (‘C’=0.1, ‘loss’=‘squared_epsilon_insensitive’)

sgd-regression (‘alpha’=0.01, ‘penalty’=‘l1’)

linear-regression (‘fit_intercept’ ‘True’)

is often its ability to produce legible symbolic models. Our analysis
did not attempt to quantify the complexity of the models produced
by any of the methods. An extension of this work could establish a
standardized way of assessing this complexity, for example using
the polynomial complexity method proposed by Vladislavleva et.
al. [36]. Ultimately the relative value of explainability versus predic-
tive power will depend on the application domain. Second, we have
considered real world datasets for the source of our benchmarks.
Simulation studies could also be used, and have the advantage of
providing ground truth about the underlying process, as well as the
ability to scale complexity or difficulty. It should also be noted that
the datasets used for this study were of relatively small sizes (up
to 1000 of instances). Future work should consider larger dataset
sizes, but will come with a larger computational burden.

We have also limited our initial analysis to looking at bulk perfor-
mance of algorithms over many datasets. Further analysis of these
results should provide insight into the properties of datasets that
make them amenable to, or difficult for, GP-based regression. Such
an analysis can provide suggestions for new problem sub-types
that may be of interest to the GP community.

We hope this study will provide the ML community with a data-
driven sense of how state-of-the-art SR methods compare broadly
to other popular ML approaches to regression.

SUPPLEMENTARY MATERIALS
Source code for our experiment can be found at the following url:
https://github.com/EpistasisLab/regression-benchmark.

1189

https://github.com/EpistasisLab/regression-benchmark

GECCO ’18, July 15–19, 2018, Kyoto, Japan P. Orzechowski et al.

ACKNOWLEDGMENTS
This research was supported in part by PL-Grid Infrastructure and
by NIH grants LM010098 and AI116794.

REFERENCES
[1] Ignacio Arnaldo, Krzysztof Krawiec, and Una-May O’Reilly. 2014. Multiple

regression genetic programming. In Proceedings of the 2014 Annual Conference on
Genetic and Evolutionary Computation. ACM, 879–886.

[2] J.C. Bongard and H. Lipson. 2005. Nonlinear System Identification Using Coevo-
lution of Models and Tests. IEEE Transactions on Evolutionary Computation 9, 4
(Aug. 2005), 361–384. DOI:http://dx.doi.org/10.1109/TEVC.2005.850293

[3] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[4] Mauro Castelli, Sara Silva, and Leonardo Vanneschi. 2015. A C++ frame-

work for geometric semantic genetic programming. Genetic Programming and
Evolvable Machines 16, 1 (March 2015), 73–81. DOI:http://dx.doi.org/10.1007/
s10710-014-9218-0

[5] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. ACM, 785–794.

[6] Grant Dick, Aysha P. Rimoni, and Peter A. Whigham. 2015. A Re-Examination
of the Use of Genetic Programming on the Oral Bioavailability Problem. ACM
Press, 1015–1022. DOI:http://dx.doi.org/10.1145/2739480.2754771

[7] Pedro Domingos. 2012. A few useful things to know about machine learning.
Commun. ACM 55, 10 (2012), 78–87.

[8] Harris Drucker. 1997. Improving regressors using boosting techniques. In ICML,
Vol. 97. 107–115.

[9] Chris Drummond and Nathalie Japkowicz. 2010. Warning: statistical bench-
marking is addictive. Kicking the habit in machine learning. Journal of Ex-
perimental & Theoretical Artificial Intelligence 22, 1 (March 2010), 67–80. DOI:
http://dx.doi.org/10.1080/09528130903010295

[10] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, and others. 2004.
Least angle regression. The Annals of statistics 32, 2 (2004), 407–499.

[11] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim.
2014. Do we need hundreds of classifiers to solve real world classification
problems. J. Mach. Learn. Res 15, 1 (2014), 3133–3181.

[12] Yoav Freund and Robert E Schapire. 1997. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of computer and system
sciences 55, 1 (1997), 119–139.

[13] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189–1232.

[14] Geoffrey E Hinton. 1989. Connectionist Learning Procedures. Artificial Intelli-
gence 40 (1989), 185–234.

[15] Gregory S Hornby. 2006. ALPS: the age-layered population structure for reducing
the problem of premature convergence. In Proceedings of the 8th annual conference
on Genetic and evolutionary computation. ACM, 815–822. DOI:http://dx.doi.org/
10.1145/1143997.1144142

[16] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[17] Michael F. Korns. 2011. Accuracy in symbolic regression. In Genetic Programming
Theory and Practice IX. Springer, 129–151. http://link.springer.com/chapter/10.
1007/978-1-4614-1770-5_8

[18] William La Cava, Kourosh Danai, and Lee Spector. 2016. Inference of compact
nonlinear dynamic models by epigenetic local search. Engineering Applications
of Artificial Intelligence 55 (Oct. 2016), 292–306. DOI:http://dx.doi.org/10.1016/j.
engappai.2016.07.004

[19] William La Cava, Kourosh Danai, Lee Spector, Paul Fleming, Alan Wright, and
Matthew Lackner. 2016. Automatic identification of wind turbine models using
evolutionary multiobjective optimization. Renewable Energy 87, Part 2 (March
2016), 892–902. DOI:http://dx.doi.org/10.1016/j.renene.2015.09.068

[20] William La Cava, Lee Spector, and Kourosh Danai. 2016. Epsilon-Lexicase Se-
lection for Regression. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference 2016 (GECCO ’16). ACM, New York, NY, USA, 741–748. DOI:
http://dx.doi.org/10.1145/2908812.2908898

[21] James McDermott, David R. White, Sean Luke, Luca Manzoni, Mauro Castelli,
Leonardo Vanneschi, Wojciech Jaskowski, Krzysztof Krawiec, Robin Harper, and
Kenneth De Jong. 2012. Genetic programming needs better benchmarks. In Pro-
ceedings of the fourteenth international conference on Genetic and evolutionary com-
putation conference. ACM, 791–798. http://dl.acm.org/citation.cfm?id=2330273

[22] Alberto Moraglio, Krzysztof Krawiec, and Colin G. Johnson. 2012. Geometric
semantic genetic programming. In Parallel Problem Solving from Nature-PPSN XII.
Springer, 21–31. http://link.springer.com/chapter/10.1007/978-3-642-32937-1_3

[23] Quang Uy Nguyen, Tuan Anh Pham, Xuan Hoai Nguyen, and James McDermott.
2015. Subtree semantic geometric crossover for genetic programming. Genetic
Programming and Evolvable Machines (Oct. 2015), 1–29. DOI:http://dx.doi.org/
10.1007/s10710-015-9253-5

[24] Randal S. Olson, William La Cava, Zairah Mustahsan, Akshay Varik, and Ja-
son H. Moore. 2017. Data-driven Advice for Applying Machine Learning to
Bioinformatics Problems. In Pacific Symposium on Biocomputing (PSB). http:
//arxiv.org/abs/1708.05070 arXiv: 1708.05070.

[25] Randal S. Olson, William La Cava, Patryk Orzechowski, Ryan J. Urbanowicz, and
Jason H. Moore. 2017. PMLB: A Large Benchmark Suite for Machine Learning
Evaluation and Comparison. BioData Mining (2017). https://arxiv.org/abs/1703.
00512 arXiv preprint arXiv:1703.00512.

[26] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, and others. 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research 12, Oct (2011), 2825–2830.

[27] Christian Robert. 2014. Machine learning, a probabilistic perspective. (2014).
[28] Michael Schmidt and Hod Lipson. 2009. Distilling free-form natural laws from

experimental data. Science 324, 5923 (2009), 81–85. http://www.sciencemag.org/
content/324/5923/81.short

[29] Michael Schmidt and Hod Lipson. 2011. Age-fitness pareto optimization. In
Genetic Programming Theory and Practice VIII. Springer, 129–146. http://link.
springer.com/chapter/10.1007/978-1-4419-7747-2_8

[30] Michael D Schmidt, Ravishankar R Vallabhajosyula, Jerry W Jenkins, Jonathan E
Hood, Abhishek S Soni, John P Wikswo, and Hod Lipson. 2011. Automated
refinement and inference of analytical models for metabolic networks. Physical
Biology 8, 5 (Oct. 2011), 055011. DOI:http://dx.doi.org/10.1088/1478-3975/8/5/
055011

[31] Alex J Smola and Bernhard Schölkopf. 2004. A tutorial on support vector regres-
sion. Statistics and computing 14, 3 (2004), 199–222.

[32] Lee Spector. 2012. Assessment of problem modality by differential performance
of lexicase selection in genetic programming: a preliminary report. In Proceedings
of the fourteenth international conference on Genetic and evolutionary computation
conference companion. 401–408. http://dl.acm.org/citation.cfm?id=2330846

[33] Karolina Stanislawska, Krzysztof Krawiec, and Zbigniew W. Kundzewicz. 2012.
Modeling global temperature changes with genetic programming. Computers &
Mathematics with Applications 64, 12 (Dec. 2012), 3717–3728. DOI:http://dx.doi.
org/10.1016/j.camwa.2012.02.049

[34] Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological) (1996), 267–288.

[35] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. 2014. OpenML:
Networked Science in Machine Learning. SIGKDD Explor. Newsl. 15, 2 (June 2014),
49–60. DOI:http://dx.doi.org/10.1145/2641190.2641198

[36] E.J. Vladislavleva, G.F. Smits, and D. den Hertog. 2009. Order of Nonlinearity as
a Complexity Measure for Models Generated by Symbolic Regression via Pareto
Genetic Programming. IEEE Transactions on Evolutionary Computation 13, 2
(2009), 333–349. DOI:http://dx.doi.org/10.1109/TEVC.2008.926486

[37] Jan Žegklitz and Petr Pošík. 2017. Symbolic Regression Algorithms with Built-in
Linear Regression. arXiv:1701.03641 [cs] (Jan. 2017). http://arxiv.org/abs/1701.
03641 arXiv: 1701.03641.

[38] David R. White, James McDermott, Mauro Castelli, Luca Manzoni, Brian W.
Goldman, Gabriel Kronberger, Wojciech Jaśkowski, Una-May O’Reilly, and Sean
Luke. 2012. Better GP benchmarks: community survey results and proposals.
Genetic Programming and Evolvable Machines 14, 1 (Dec. 2012), 3–29. DOI:http:
//dx.doi.org/10.1007/s10710-012-9177-2

1190

http://dx.doi.org/10.1109/TEVC.2005.850293
http://dx.doi.org/10.1007/s10710-014-9218-0
http://dx.doi.org/10.1007/s10710-014-9218-0
http://dx.doi.org/10.1145/2739480.2754771
http://dx.doi.org/10.1080/09528130903010295
http://dx.doi.org/10.1145/1143997.1144142
http://dx.doi.org/10.1145/1143997.1144142
http://link.springer.com/chapter/10.1007/978-1-4614-1770-5_8
http://link.springer.com/chapter/10.1007/978-1-4614-1770-5_8
http://dx.doi.org/10.1016/j.engappai.2016.07.004
http://dx.doi.org/10.1016/j.engappai.2016.07.004
http://dx.doi.org/10.1016/j.renene.2015.09.068
http://dx.doi.org/10.1145/2908812.2908898
http://dl.acm.org/citation.cfm?id=2330273
http://link.springer.com/chapter/10.1007/978-3-642-32937-1_3
http://dx.doi.org/10.1007/s10710-015-9253-5
http://dx.doi.org/10.1007/s10710-015-9253-5
http://arxiv.org/abs/1708.05070
http://arxiv.org/abs/1708.05070
https://arxiv.org/abs/1703.00512
https://arxiv.org/abs/1703.00512
http://www.sciencemag.org/content/324/5923/81.short
http://www.sciencemag.org/content/324/5923/81.short
http://link.springer.com/chapter/10.1007/978-1-4419-7747-2_8
http://link.springer.com/chapter/10.1007/978-1-4419-7747-2_8
http://dx.doi.org/10.1088/1478-3975/8/5/055011
http://dx.doi.org/10.1088/1478-3975/8/5/055011
http://dl.acm.org/citation.cfm?id=2330846
http://dx.doi.org/10.1016/j.camwa.2012.02.049
http://dx.doi.org/10.1016/j.camwa.2012.02.049
http://dx.doi.org/10.1145/2641190.2641198
http://dx.doi.org/10.1109/TEVC.2008.926486
http://arxiv.org/abs/1701.03641
http://arxiv.org/abs/1701.03641
http://dx.doi.org/10.1007/s10710-012-9177-2
http://dx.doi.org/10.1007/s10710-012-9177-2

	Abstract
	1 Introduction
	2 Methods
	2.1 GP methods
	2.2 ML methods
	2.3 Datasets
	2.4 Experiment design

	3 Results
	4 Conclusions
	Acknowledgments
	References

